Answer:
See explanation and images attached
Explanation:
a) In the mechanism for the acid catalysed esterification of propanoic acid using ethanol, we can see that the first step is the protonation of the acid followed by nucleophillic attack of the alcohol. Loss of water and consequent deprotonation regenerates the acid catalyst. We can see the fate of the 18O labelled ethanol in the mechanism shown.
b) In the second mechanism, an unnamed ester is hydrolysed using an acid catalyst. The attack of the acid and subsequent nucleophillic attack of water labelled with 18O leads to the incorporation of this 18O into the product acid as shown in the mechanism attached to this answer.
Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.
Carbon dioxide (CO2)
in the process of respiration, oxygen and glucose react to form carbon dioxide and water.
The partial pressure of methane in the mixture of methane and ethane has been 1 atm.
Partial pressure has been the pressure exerted by a gas in the solution or mixture. The partial pressure of each gas has been the total pressure of the gaseous mixture.
The partial pressure of the gas has been dependent on the volume, temperature, and concentration of the gas.
The given methane has a partial pressure of 1 atm in the 15 L vessel. The addition of ethane results in the change in the total pressure of the mixture, as there have been additional moles of solute that contributes to the solution pressure.
However, since there has been no change in the concentration and volume of methane, the pressure exerted by methane has been the same. Thus, the partial pressure of methane has been 1 atm.
For more information about the partial pressure, refer to the link:
brainly.com/question/14623719
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).