I'm not sure but I think it is A. image one has the most spread out particles like a gas, and b has closer together particles like a liquid or solid. since there are no choices that say A=gass and B=solid, so I am guessing it is answer A.
Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
The correct option is (b)
NaNH2 is an effective base. It can be a good nucleophile in the few situations where its strong basicity does not have negative side effects. It is employed in elimination reactions as well as the deprotonation of weak acids.Alkynes, alcohols, and a variety of other functional groups with acidic protons, such as esters and ketones, will all be deprotonated by NaNH2, a powerful base.Alkynes are deprotonated with NaNH2 to produce what are known as "acetylide" ions. These ions are powerful nucleophiles that can react with alkyl halides to create carbon-carbon bonds and add to carbonyls in an addition reaction.Acid/base and nucleophilic substitution are the two types of reactions.Using the right base, terminal alkynes can be deprotonated to produce a carbanion.A good C is the acetylide carbanion.The acetylide carbanion can undergo nucleophilic substitution reactions because it is a potent C nucleophile. (often SN2) with 1 or 2 alkyl halides with electrophilic C to create an internal alkyne (Cl, Br, or I).Elimination is more likely to occur with 3-alkyl halides.It is possible to swap either one or both of the terminal H atoms in ethylene (acetylene) to create monosubstituted (R-C-C-H) and symmetrical (R = R') or unsymmetrical (R not equal to R') disubstituted alkynes (R-C-C-R').
Learn more about NANH2 here :-
brainly.com/question/12601787
#SPJ4
What question there’s no question on here
Answer:
Ethanol + Potassium Permanganate + Sulfuric Acid = Acetic Acid + Manganese(II) Sulfate + Water + Potassium Sulfate
Explanation: