There is one missing point in the question.
The formula to find an increase in boiling Temperature is :
ΔT = kb x M
ΔT = is the increase in boiling Temperature
Kb = Boiling point constant of the Solvent
M = Molarity
You did not provide the Kb. If you have it, you just have to insert it to the formula to find the ΔT.
And assuming that the other solution is water, you just have to add it up with 100 Celcius
The sub-atomic particles of an atom are the proton, electron and the neutron. An electron has a charge of -1 and a smaller
mass than a proton. Proton has the same mass with the neutron. The ratio
between the mass of a proton and an electron is about 2000. An electron has an
equal value but negative charge with the proton.
Answer:
2-Butene
Explanation:
The first step is the <u>ionization</u> of the acid to produce the hydronium ion. Then the OH will attack this ion to produce a <u>charged species</u> that can be stabilized when <u>H2O is produced</u>.
Then an <u>elimination</u> takes place to produce the more <u>substituted alkene</u> 2-butene and the <u>hydronium ion</u> is gain produced.
Description:
<span>"0.0400 mol of H2O2 decomposed into 0.0400 mol of H2O and 0.0200 mol of O2."
This means that a certain amount of H2O2 (0.0400 mol) decomposed or was broken down into two components, 0.04 mol of H2O and 0.02 mol of O2. To examine the system, we need a balanced equation:
H2O2 ---> H2O + 0.5O2
The final concentrations of the system indicates that the system is in equilibrium. </span>