Here, Molar mass of N2O4 = 92.02 g/mol
So, Number of molecules in 1 mole (92.02 g) = 6.023 * 10²³
Number of molecules in 76.3 g = 6.023 * 10²³ / 92.02 * 76.3
= 6.023 * 10²³ / 1.20
= 5 * 10²³
In short, Your Answer would be approx. 5 * 10²³ molecules
Hope this helps!
Hydrogen is actually a combustible gas. But when you try to burn it, it explodes. However when you produce hydrogen in a laboratory, which is relatively less, and put a burning splint, it also explodes, but in a reduced form - a <span>POP </span><span>sound. The very small explosion (doesn't feel like one, does it?) extinguishes the flame.</span>
Answer:
carbon = 7 atoms
hydrogen = 8 atoms
nitrogen = 4 atoms
oxygen = 2 atoms
Explanation:
Chemical formula = C₇H₈N₄O₂
Elements present:
carbon
hydrogen
nitrogen
oxygen
Number of atoms of each element.
carbon = 7 atoms
hydrogen = 8 atoms
nitrogen = 4 atoms
oxygen = 2 atoms
Answer:
[Ni(CN)4]2- square planar
[NiCl4]2- tetrahedral
Explanation:
For a four coordinate complex such as [Ni(CN)4]2- and [NiCl4]2-, we can decide its geometry by closely considering its magnetic properties. Both of the complexes are d8 complexes which could be found either in the tetrahedral or square planar crystal field depending on the nature of the ligand.
CN^- being a strong field ligand leads to the formation of a square planar diamagnetic d8 complex of Ni^2+. Similarly, Cl^- being a weak field ligand leads to the formation a a tetrahedral paramagnetic d8 complex of Ni^+ hence the answer given above.
According to what is known about chemical equilibrium and Le Chatelier's principle, when you increase the amount of the reactants, the reaction will be moved to the products, this is because, the most reactants we have the most products we can produce.
From the given choices, the one that goes according to this reason is the third one: The volume of water vapor increases.