To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:
The angular displacement is given as the form:
In the equlibrium we have to and in the given position we have to
Derived the expression we will have the equivalent to angular velocity
Replacing,
Finally
Therefore the maximum angular displacement is 9.848°
Since there is no decimal point in the number given above, the counting for the number of the significant figures will start from the left. Then, the first zero from the left is insignificant. Therefore, in this number there are 6 significant figures.
A. The amount of work increases.
Imagine you are pushing a box on a flat surface. Now imagine pushing it up a steep hill. It gets harder and that's how I remember this.
Hope this helps.
I am using the equation F=ma (force equals mass times acceleration) to solve these problems.
1. You are looking for force, and have mass and acceleration. You just plug in the values for mass and acceleration to get the force needed.
F=(15kg)(5m/s^2)
F=75N
2. Again, you are looking for force, and just need to plug in the values for mass and acceleration
F=(3kg)(2.4m/s^2)
F=7.2N
3. In this problem, you have force and mass, but need to find acceleration. To do this, you need to get acceleration alone on one side of the equation - divide each side by m. Your equation will now be F/m=a
a=(5N)/(3.7kg)
a=18.5m/s^2
I did not use significant figures. Let me know if you need to do that and need any help on that. Hope this helps!