K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Displacement = 31 - 16 = +15 m
As capacitor was discharging, The charge on the plate got reversed and the motion of charge is opposite to the flow of current.
The charging contemporary asymptotically processes 0 as the capacitor becomes charged up to the battery voltage.
The capacitor is completely charged when the voltage of the electricity supply is equal to that at the capacitor terminals. that is referred to as capacitor charging; and the charging segment is over when modern-day stops flowing thru the electrical circuit.
A capacitor can be slowly charged to the important voltage and then discharged quick to provide the power wanted. it's far even viable to charge several capacitors to a positive voltage and then discharge them in any such way as to get extra voltage out of the gadget than became installed.
Learn more about capacitor here:-brainly.com/question/14883923
#SPJ4
Answer:
<h3>
The area of second coil is ≅ 0.025 
</h3>
Explanation:
Given :
No. of turns in the first coil 
No. of turns in the second coil 
Area of first coil 
According to the law of electromagnetic induction,
Induced emf =
Where
magnetic flux.
Since given in question emf of both coil is same so we compare above equation.




Therefore, the area of second coil is ≅ 0.025 