Answer:
E) The average velocity of the car is 90.0 miles per hour in the direction of motion.
Explanation:
Given;
distance covered by the car, d = 90 miles
time taken, t = 60 minutes = 1 hour
The average velocity of the car is given by change in displacement per change in time;
V = Δd / Δt

Therefore, the average velocity of the car is 90.0 miles per hour in the direction of motion.
Answer:
Potential Energy = 294J, Kinetic Engergy = 48.02J
Explanation:
We have these formulas:
Potential Energy = mass * gravitational force * height (m) = 1 * 9.8 * 30 = 294(J)
Kinetic Energy = 1/2 * mass * velocity^2 = 1/2 * 1 * 9.8^2 = 48.02 (J)
As the rock falling at an acceleration of 9.8m/s^2 which means for each second, the rock increases 9.8m/s. I think we are missing time to find the instantaneous velocity, the formula is (initial displacement - final displacement)/ (initial time - final time) which will directly give the final answer for you.
Answer:

Explanation:
initial velocity
magnitude of velocity, v = 12 m/s
angle made of velocity with negative x-axis,θ = 60°
We need to calculate x- component of v

velocity is in negative x-direction, v = -12 m/s
now,



Hence, the velocity x-component is equal to -6 m/s.
Answer:
The time taken for the commercial Jet liner to reach the end of its runway is 10.18 s.
Explanation:
Given;
average acceleration of the commercial Jet liner, a = 3g = 3 x 9.8 m/s² = 29.4 m/s²
distance traveled by the commercial Jet liner, s = 1542 m
The time taken for the commercial Jet liner to reach the end of its runway is calculated as follows;
s = ut + ¹/₂at²
where;
u is the initial velocity of the commercial Jet liner = 0
s = 0 + ¹/₂at²
s = ¹/₂at²
2s = at²

Therefore, the time taken for the commercial Jet liner to reach the end of its runway is 10.18 s.