So we want to know what is the purpose of a lanyard attached to a safety switch. So in case the operator falls overboard a safety switch is installed and connected to the operators hand or waist. Which ever is more practical. This safety switch turns off the motor.
Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.
According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.
Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.
Learn more: brainly.com/question/17638582
Answer:
the knee extensors must exert 15.87 N
Explanation:
Given the data in the question;
mass m = 4.5 kg
radius of gyration k = 23 cm = 0.23 m
angle ∅ = 30°
∝ = 1 rad/s²
distance of 3 cm from the axis of rotation at the knee r = 3 cm = 0.03 m
using the expression;
ζ = I∝
ζ = mk²∝
we substitute
ζ = 4.5 × (0.23)² × 1
ζ = 0.23805 N-m
so
from; ζ = rFsin∅
F = ζ / rsin∅
we substitute
F = 0.23805 / (0.03 × sin( 30 ° )
F = 0.23805 / (0.03 × 0.5)
F F = 0.23805 / 0.015
F = 15.87 N
Therefore, the knee extensors must exert 15.87 N
Answer:
An electric field is a region around a charged object where the object's electric force is exerted on other charged objects. Electric fields get weaker the farther away they are from the charge. An electric field is invisible. You can use the field line to represent it.
Explanation: