We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons
Clause 2 of Section 2 provides that the Supreme Court has original jurisdiction in cases affecting ambassadors, ministers and consuls, and also in those controversies which are subject to federal judicial power because at least one state is a party
The moon orbiting the Earth
Explanation:
The motion of the moon orbiting the earth is a circular motion. Circular motion is simply the motion of an object in circle at constant speed.
- A cannonball flying from a cannon is a projectile motion and not a circular motion.
- A car moving along a straight track is a linear/translational motion.
- Pendulum of a grandfather clock is a simple harmonic motion.
Learn more:
Circular motion brainly.com/question/2562955
#learnwithBrainly
Answer:
From the question we are told that
The length of the rod is 
The speed is v
The angle made by the rod is 
Generally the x-component of the rod's length is

Generally the length of the rod along the x-axis as seen by the observer, is mathematically defined by the theory of relativity as

=> ![L_xo = [L_o cos (\theta )] \sqrt{1 - \frac{v^2}{c^2} }](https://tex.z-dn.net/?f=L_xo%20%20%3D%20%20%5BL_o%20cos%20%28%5Ctheta%20%29%5D%20%20%5Csqrt%7B1%20%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D)
Generally the y-component of the rods length is mathematically represented as

Generally the length of the rod along the y-axis as seen by the observer, is also equivalent to the actual length of the rod along the y-axis i.e
Generally the resultant length of the rod as seen by the observer is mathematically represented as

=> ![L_r = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%5B%20%28L_o%20cos%28%5Ctheta%29%20%5B%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%5C%20%5C%20%5D%5E2%2B%20L_o%20sin%28%5Ctheta%20%29%5E2%29%7D)
=> ![L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%3D%20%5Csqrt%7B%20%28L_o%20cos%28%5Ctheta%29%5E2%20%2A%20%5B%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%20%5D%5E2%20%2B%20%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%28L_o%20cos%28%5Ctheta%29%20%5E2%20%5B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%5D%20%2B%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{L_o^2 * cos^2(\theta) [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}](https://tex.z-dn.net/?f=L_r%20%3D%20%20%5Csqrt%7BL_o%5E2%20%2A%20cos%5E2%28%5Ctheta%29%20%20%5B1%20-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7D%20%5D%2B%20L_o%5E2%20%2A%20sin%28%5Ctheta%29%5E2%7D)
=> ![L_r = \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }](https://tex.z-dn.net/?f=L_r%20%20%3D%20%20%5Csqrt%7B%20%5Bcos%5E2%5Ctheta%20%2Bsin%5E2%5Ctheta%20%5D-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7Dcos%5E2%20%5Ctheta%20%7D)
=> 
Hence the length of the rod as measured by a stationary observer is

Generally the angle made is mathematically represented

=> 
=>
Explanation:
Answer:
Explanation:
The name of the article from which the quote "Physicists speak of the continuous dance of sub-atomic matter which goes on all the time. They have actually used the words dance of creation and destruction or energy dance." was taken from is Carl Sagan Fritjof Capra on The dance that reveals the mysteries of the universe-Part ll