IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
<span>the same amount of work being done over a longer period of time.</span>
Answer:
24m/s²
Explanation:
Given
Distance S = 3m
Time of fall = 0.5sec
Required
Acceleration due to gravity
Using the equation of motion
S = ut+1/2gt²
Substitute the given values
3 = 0+1/2g(0.5)²
3 = 1/2(0.25)g
3 = 0.125g
g = 3/0.125
g = 24
Hence the value for the acceleration of gravity on this new planet is 24m/s²
To solve this problem it is necessary to apply the concepts related to momentum, momentum and Force. Mathematically the Impulse can be described as

Where,
F= Force
t= time
At the same time the moment can be described as a function of mass and velocity, that is

Where,
m = mass
v = Velocity
From equilibrium the impulse is equal to the momentum, therefore


PART A) Since the body ends at rest, we have the final speed is zero, so the momentum would be



Therefore the magnitude of the person's impulse is 1125Kg.m/s
PART B) From the equation obtained previously we have that the Force would be:



Therefore the magnitude of the average force the airbag exerts on the person is 45000N
warm fluids are less dense than cold fluids