We will solve this problem using the direct concept related to band gap energy, that is, a band gap is the distance between the valence band of electrons and the conduction band, i. e, the energy range in a solid where no electron states (Electronic state) can exist Mathematically can be described as,

Where,
h = Planck's constant
n = Energy level
mc = Effective mass of the point charge
R = Size of the particle
As you can see the energy is inversely proportional to the size of the particle:

Therefore if the size is decreased, the amount of energy is increased.
The characteristics of electromagnetic waves typically represent as follows:
- There are changes in the electric and magnetic fields simultaneously so that both fields have maximum and minimum values at the same time and place.
- The direction of the electric field and the magnetic field are perpendicular to each other. The direction of both is perpendicular to the direction of the wave propagation.
- The shape of electromagnetic waves is transverse waves.
- It has general wave characteristics like polarization, reflection, refraction, interference, and diffraction.
- The amount of the electric field (E) is directly proportional to the magnitude of the magnetic field, with the relationship E = cB.
- The universal constant of the velocity of electromagnetic waves in a vacuum is

- The speed at which electromagnetic waves propagate depends merely on the electrical and magnetic properties of the medium that it travels on.
- Because electromagnetic waves do not contain an electric charge, they do not experience any possible deviation in the electric or magnetic fields.
<h3>Further explanation</h3>
- Two physicists who contributed significantly to developing the concept of electromagnetic waves are Faraday and Maxwell around 1831-1864.
- From the observations, Faraday suggested that changes in the magnetic field cause an electric charge to flow in the loop of wire, contributing in the emergence of an electric field.
- Maxwell proposed a reverse process, which is a change in the electric field will generate a magnetic field.
- As follows, according to Faraday's Law, changes in sinusoidal magnetic fields generate electric fields which also change sinusoidally.
- Meantime, according to Maxwell's Hypothesis, changes in sinusoidal electric fields generate magnetic fields which also change sinusoidally.
- Furthermore, there is a process of combining electric and magnetic fields that propagate in all directions called electromagnetic waves.
<h3>Learn more </h3>
- About vector components brainly.com/question/1600633
- Determine the shortest wavelength in electron transition brainly.com/question/4986277
- Particle's speed and direction of motion brainly.com/question/2814900
Keywords: the characteristics, electromagnetic waves, transverse, vacuum, electric fields, magnetic, perpendicular, propagation, Maxwell, Faraday, the speed, polarization, reflection, refraction, interference, and diffraction
A. the carbons are unbalanced
B. the hydrogens are unbalanced.
D. the chlorines are unbalanced.
That leaves C. to be correctly balanced.
Answer:
The relationship between voltage, current, and resistance is described by Ohm's law. This equation, i = v/r, tells us that the current, i, flowing through a circuit is directly proportional to the voltage, v, and inversely proportional to the resistance, r.