Answer:
The value is 
Explanation:
From the question we are told that
The orbital radius is 
Generally the de Broglie wavelength is mathematically represented as

substituting values


Answer:
400 W/m^2 and 31℃
Explanation:
The output heat flux q"= 20 W/m^2 (geven)
The output heat flux from.the wall to the air by convection
q"conv = h(ts - t∞)
q"conv = 20(50-30) = 400 W/m^2
Therefor, this case is unsteady and the wall temperature changes with time till the energy balance exist.
ENERGY BALANCE
The input energy must be equal to the output energy for steady state condition. If not the state will be unstaidy or transient.
2. Its noticed that the output heat flux is not that the I put heat flux, therefore the wall tempers will be decreased till the output heat flux is reduced to the value of the given input heat flux
T steady = T∞ +q"/h
= 30 + 20/20 = 31℃
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Answer:
39 g H2O contains 1.3 ×1024molecules H2O.
Explanation:
Answer:
Difference threshold or also Just Noticeable Difference
Explanation:
The above mentioned case between room mates, where one room mate was able to detect a minute change in volume shows an instance of the difference threshold.
Difference threshold can be defined as stimulation at its minimum level that can be detected by an individual almost 50 % of the times.
It is the lowest possible level of sound that is detectable by a person.
That is what happened in the mentioned case that when the volume was increased from 14 to 15, Amber was able to detect it.