I did the math i got 220 grams
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

Explanation:
It's (D), nuclear fission................
Answer:
The Law of Conservation of Energy states that energy cannot be created or destroyed. In other words, the total energy of a system remains constant. This is an important concept to remember when dealing with energy problems. The two basic forms of energy that we will focus on are kinetic energy and potential energy.
Explanation:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
Im bad at these questions hope it helps and have a good day.
Answer:
V₂ = 1.86 L
Explanation:
Given data:
Initial volume = 4.30 L
Initial pressure = 1 atm
Initial temperature = 273.15 K
Final temperature = 302 K
Final volume = ?
Final pressure = 2.56 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁T₂
/T₁ P₂
V₂ = 1 atm ×4.30 L × 302 K / 273.15 K × 2.56 atm
V₂ = 1298.6 atm.L.K / 699.26 K.atm
V₂ = 1.86 L