Answer:
(a) Ionic
(b) Nonpolar covalent
(c) Polar covalent
(d) Polar covalent
(e) Nonpolar covalent
(f) Polar covalent
<em>For those substances with polar covalent bonds, which has the least polar bond?</em> NO₂
<em>For those substances with polar covalent bonds, which has the most polar bond?</em> BF₃
Explanation:
<em>Are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent?</em>
The nature of a bond depends on the modulus of the difference of electronegativity (|ΔEN|) between the atoms that form it.
- If |ΔEN| = 0, the bond is nonpolar covalent.
- If 0 < |ΔEN| ≤ 2, the bond is polar covalent.
- If |ΔEN| > 2, the bond is ionic.
<em>(a) KCl</em> |ΔEN| = |EN(K) - EN(Cl)| = |0.8 - 3.0| = 2.2. The bond is ionic.
<em>(b) P₄</em> |ΔEN| = |EN(P) - EN(P)| = |2.1 - 2.1| = 0.0. The bond is nonpolar covalent.
<em>(c) BF₃</em> |ΔEN| = |EN(B) - EN(F)| = |2.0 - 4.0| = 2.0. The bond is polar covalent.
<em>(d) SO₂</em> |ΔEN| = |EN(S) - EN(O)| = |2.5 - 3.5| = 1.0. The bond is polar covalent.
<em>(e) Br₂</em> |ΔEN| = |EN(Br) - EN(Br)| = |2.8 - 2.8| = 0.0. The bond is nonpolar covalent.
<em>(f) NO₂</em> |ΔEN| = |EN(N) - EN(O)| = |3.0 - 3.5| = 0.5. The bond is polar covalent.
Total moles of gas in the reactants: 4
Total moles of gas in the products: 2
Answer:
c
Explanation:
it is c because that is the andwer
The standard temperature and pressure conditions enthalpy is usually measured under are 1kPa and 273K (option A).
<h3>What is enthalpy?</h3>
Enthalpy in thermodynamics is a measure of the heat content of a chemical or physical system.
Enthalpy is the sum of the internal energy and pressure times volume It can be calculated using the following formula:
H = E + P V
Where;
H = Enthalpy
E = internal energy
P = pressure
V = volume
However, the enthalpy of a substance is usually measured under standard temperature and pressure.
- The standard temperature is 273 Kelvin or K
- The standard pressure is 1kPa
Learn more about enthalpy at: brainly.com/question/13996238
#SPJ1
They are the outer layer of the electron layers.