Answer:
60 cm³ of water
Explanation:
We'll begin by calculating the volume of the diluted solution. This can be obtained as follow:
Concentration of stock solution (C₁) = 17 M
Volume of stock solution (V₁) = 25 cm³
Concentration of diluted solution (C₂) = 5 M
Volume of diluted solution (V₂) =?
C₁V₁ = C₂V₂
17 × 25 = 5 × V₂
425 = 5 × V₂
Divide both side by 5
V₂ = 425 / 5
V₂ = 85 cm³
Thus, the volume of the diluted solution is 85 cm³
Finally, we shall determine the volume of water needed to dilute the solution. This can be obtained as follow:
Volume of stock solution (V₁) = 25 cm³
Volume of diluted solution (V₂) = 85 cm³
Volume of water =?
Volume of water = V₂ – V₁
Volume of water = 85 – 25
Volume of water = 60 cm³
Therefore, 60 cm³ of water is needed to dilute the solution.
City B is at a higher temperature because as you go higher in altitude the boiling point of water becomes lower.
Polyethylene is synthesized from ethylene which is a compound derived from natural gas or petroleum. It’s essentially a thermoplastic, implying that it can be molten and remolded into the desired shape making it reusable and cost-effective. Of all the different kinds of plastics produced around the world, polyethylene is the most common and significant.
Polyethylene is manufactured in three different forms namely:
Low Density Polyethylene (LDPE),High Density Polyethylene (HDPE) andLinear Low Density Polyethylene (LLDPE),
Each of these three plastics has different applications ranging from containers, packaging and films to buckets and bottles.
Hope it helps you...
Mass C₆H₈O₇ : 0.531484 g
<h3>Further explanation</h3>
Reaction
3NaHCO₃ (aq) + C₆H₈O₇ (aq) → 3 CO₂ (g) + 3 H₂O (l) + Na₃C₆H₅O₇ (aq)
MW NaHCO₃ : 84 g/mol
mass NaHCO₃ : 7.10² mg=0.7 g
mol NaHCO₃ :

mol C₆H₈O₇ :

MW C₆H₈O₇ : 192 g/mol
mass C₆H₈O₇ :
