Answer:
The amount of NO₂ that can be produced 8.533 g
Explanation:
According to question
2 NO(g) + O₂(g) → 2 NO₂(g)
Given
Moles of nitrogen monoxide = 0.377
Moles of oxygen = 0.278
Since 'NO' is the limiting reagent according to this ratio.
According to equation
2 moles NO reacts to form 2 moles NO₂
So, 0.1855 moles NO give = 0.1855 moles of NO₂
Mass of 1 mole NO₂ = 46 g/mole
Mass of 0.1855 moles = 46 x 0.1855 = 8.533 g
Significant figures communicates the level of precision in measurements.
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
Answer:
1.5055×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Number of mole CO₂ = 2.5 moles
Number of molecules CO₂ =?
The number of molecules present in 2.5 moles CO₂ can be obtained as:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.022×10²³ molecules
Therefore,
2.5 mole of CO₂ = 2.5 × 6.022×10²³
2.5 mole of CO₂ = 1.5055×10²⁴ molecules
Thus, 1.5055×10²⁴ molecules are present in 2.5 moles CO₂