Answer:
N2O(g) + 3 H2O(l) ---------------> 2 NH3(g) + 2 O2(g)
Explanation:
If we look at the reaction stated in the question, we will notice that the option chosen in the answer is the reverse of that reaction.
One thing is clear, if a reaction is possible, then its reverse reaction is equally possible. The equilibrium position may shift towards the forward or reverse reaction based on the conditions of the reaction.
Hence if the reaction, 2NH3(g) + 2O2(g) → N2O(g) + 3H2O(l) is possible, then the reaction, N2O(g) + 3 H2O(l) ---------------> 2 NH3(g) + 2 O2(g) is also possible.
Answer:
Changes in climate can result in impacts to local air quality. Atmospheric warming associated with climate change has the potential to increase ground-level ozone in many regions, which may present challenges for compliance with the ozone standards in the future.
Answer:
7.224 × 10^28 atoms
Explanation:
The number of moles contained in a substance (n) can be calculated from this expression:
nA = n × 6.02 × 10^23 atoms
Where;
nA = number of atoms of substance
n = number of moles of substance
Avagadro's number or constant = 6.02 × 10^23 atoms
Using nA = n × 6.02 × 10^23 atoms
In this question, there are 1.2 x 10^5 moles of neon (N). The number of atoms (nA) is as follows:
nA of neon = 1.2 x 10^5 × 6.02 × 10^23
nA = 7.224 × 10^ (5 + 23)
nA = 7.224 × 10^28 atoms
The number of neon atoms in 1.2 x 10^5 is 7.224 × 10^28 atoms.
Answer:The Law of Conservation of Mass simply states that the total amount of mass should not change in a chemical reaction that is isolated (no other objects can enter the reaction). The total mass of the reactants must be equal to the total mass of the products. Thus, the correct estimate of the amount of oxygen used in the interaction is the difference between 133 g and 29 g.
Explanation: I hope this helped!