Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Answer:
volume is 7.0 liters
Explanation:
We are given;
- Molarity of the aqueous solution as 2.0 M
- Moles of the solute, K₂S as 14 moles
We are required to determine the volume of the solution;
We need to know that;
Molarity = Moles ÷ volume
Therefore;
Volume = Moles ÷ Molarity
Thus;
Volume of the solution = 14 moles ÷ 2.0 M
= 7.0 L
Hence, the volume of the molar solution is 7.0 L
2 moles of sodium hydroxide will be needed.
<h3><u>Explanation</u>:</h3>
Sodium hydroxide is a compound which is a base and nitric acid is the acid. The formula of the nitric acid is HNO3 and that of sodium hydroxide is NaOH.
The reaction between them are
NaOH +HNO3 =NaNO3 +H2O.
So here we can see that 1 mole of sodium hydroxide reacts with 1 mole of nitric acid to produce 1 mole of sodium nitrate and 1 mole of water.
So for 2 moles of nitric acid, 2 moles of sodium hydroxide will be required.
Answer:
The temperature is 30,92K
Explanation:
We use the formula PV=nRT. We convert the unit of pressure in kPa into atm.
101,325kPa----1atm
121kPa-------x=(121,3kPax 1 atm)/101,325kPa=1, 2 atm
PV=nRT---->T= (PV)/(RT)
T=(1,2 atm x 3L)/(1,42 mol x 0,082 l atm/K mol )= 30, 91721058 K