Answer: Option (b) is the correct answer.
Explanation:
In material bonding, there occurs Vander waal foces between the molecules in which their is either an induced or permanent dipole moment that attract molecules towards each other.
And, due to these forces the molecules are held together.
On the other hand, in a ionic bond there will always be transfer of electrons from one atom to another. This is because on atom which loses its valence electrons acquires a positive charge and another atom which gains the electrons acquires a negative charge.
Hence, these opposite charges strongly gets attracted towards each other forming a strong bond.
Whereas in a covalent bond, there will be sharing of electrons between the combining atoms.
In a metallic bond, there occurs a sea of electrons which is uniformly distributed throughout the solid substance or material.
Thus, we can conclude that the statement, Van der Waals bonds are formed by Van der Waals forces in which molecules or atoms have either an induced or permanent dipole moment to attract each other, about material bonding is correct.
I agree with the statement that the other person has made
Answer:
state of matter
Explanation:
so take water for example, water has a melting point and a boiling point right? So if it's below 0 degrees, then it's in its solid phase. If the temperature is above 0 degrees, then the water starts to melt into its liquid phase. Then when the temperature is above 100 degrees, water starts to boil and become its gas phase. This is the same for all substances. The only difference is different substances have different melting and boiling points so the numbers will be different depending on your substance. hope this helped!
Answer:

Explanation:
Density is found by dividing the mass by the volume.

The mass of the liquid is 12.7 grams.
We know that 15 mL of this liquid was added to a 50 mL graduated cylinder. Therefore, the volume is 15 mL. The 50 mL is not relevant, it only tells us about the graduated cylinder.

Substitute the values into the formula.

Divide.

Round to the nearest hundredth. The 6 in the tenth place tells us to round the 4 to a 5.

The density of the liquid is about 0.85 grams per milliliter and choice A is correct.