Answer:
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
Explanation:
Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>
Answer:
She could prove that it is a combination of substances by looking for a change in color, or the formation of bubbles. She could also try to pull the combination apart by physical means alone.
Explanation:
Answer:
0.9 mole of Fe(OH)3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Fe(NO3)3 + 3NaOH —> Fe(OH)3 + 3NaNO3
Now, we can determine the moles of iron (III) hydroxide formed from the reaction as follow:
From the balanced equation above,
3 moles of NaOH reacted to produce 1 mole of Fe(OH)3.
Therefore, 2.7 moles of NaOH will react to produce = 2.7/3 = 0.9 mole of Fe(OH)3.
Therefore, 0.9 mole of Fe(OH)3 is produced from the reaction.
When we put Boyle's law<span>, Charles' </span>law<span>, and Gay-Lussac's </span>law<span> together, we come up with the </span>combined gas law<span>, which shows that: Pressure is inversely proportional to volume, or higher volume equals lower pressure. It is expressed as:
</span><span>Pbutane x Voriginal/Troom = Pstandard x Vfinal/Tstandard
It seems that the given values is not complete the pressure of butane is not given and also we cannot calculate for it since there is no more than two data about the water.</span>