Answer:
The main difference is their energy level, 2s orbital is higher than 1s orbital.
Answer:
Answer:
The mole ratio of C₄H₁₀ and CO₂ is 2 : 8, which simplifies to 1 : 4.
Explanation:
The mole ratio is the relative proportion of the moles of products or reactants that participate in the reaction according to the chemical equation.
The chemical equation given is:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Once you check that the equation is balanced, you can set the mole ratios for all the reactants and products. The coefficients used in front of each reactant and product, in the balanced chemical equation, tells the mole ratios.
In this case, they are: 2 mol C₄H₁₀ : 13 mol O₂ : 8 mol CO₂ : 10 mol H₂O
Since you are asked about the mole ratio of C₄H₁₀ and CO₂ it is:
2 mol C₄H₁₀ : 8 mol CO₂ , which dividing by 2, simplifies to
1 mol C₄H₁₀ : 4 mol CO₂, or
1 : 2.
Explanation:
Answer:
The mass number is defined as the total number of protons and neutrons in an atom.
Explanation:
Henlo!
Bohr's model was unable to calculate or it required precise information about position of an electron and its velocity. It is very difficult to calculate velocity and position of an electron at the same time because electron i too small to see and may only be observed if peturbed, for example we could hit the electron with another particle such as photon or an electron, or we could apply electric or magnetic field to the electron. This will inevitably change the position of the elctron or its velocity and direction. Heisenberg aid that more precisely we can define the position of an electron, the less certainity we are able to define its velocity and vice versa.
In short, first option is correct one