Oxygen and glucose and energy. <span />
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4
Answer:
A metal only replaces a metal, and a nonmetal only replaces a nonmetal. Only a more reactive element can replace the other element in the compound with which it reacts.
Answer:
The percent yield of chloro-ethane in the reaction is 82.98%.
Explanation:

Moles of ethane = 
Moles of chlorine gases =
As we can see that 1 mol of ethane react with 1 mole of chlorine gas.the 10 moles will require 10 mole of chlorine gas, but only 9.1549 moles of chlorine gas is present.
This means that chlorine gas is in limiting amount and amount of formation of chloro-ethane will depend upon amount of chlorine gas.
According to reaction , 1 mol of chloro ethane gives 1 mol of chloro-ethane.
Then 9.1549 moles of chlorien gas will give:
of chloro-ethane
Mass of 9.1549 moles of chloro-ethane:
9.1549 mol × 64.5 g/mol = 590.4910 g
Theoretical yield of chloro-ethane: 590.4910 g
Given experimental yield of chloro-ethane: 490.0 g


The percent yield of chloro-ethane in the reaction is 82.98%.