Mass of sodium thiosulfate
is 110. g
Volume of the solution is 350. mL
Calculating the moles of sodium thiosulfate:
= 0.696 mol
Converting the volume of solution to L:

Finding out the concentration of solution in molarity:

Answer:
Intramolecular forces are the forces that hold atoms together within a molecule. Intermolecular forces are forces that exist between molecules.
Explanation:
Examples: Intermolecular forces are categorized into dipole-dipole forces, London dispersion forces and hydrogen bonding forces.
Intramolecular forces are categorized into covalent, ionic and metal bonds
Answer:
<h2>The answer is 334 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of ethanol = 423 cm³
density = 0.789 g/cm³
So we have
mass = 0.789 × 423 = 333.747
We have the final answer as
<h3>334 g</h3>
Hope this helps you
Given:
0.607 mol of the weak acid
0.609 naa
2.00 liters of solution
The solution for finding the ph of a buffer:
[HA] = 0.607 / 2.00 = 0.3035 M
[A-]= 0.609/ 2.00 = 0.3045 M
pKa = 6.25
pH = 6.25 + log 0.3045/ 0.3035 = 6.25 is the ph buffer prepared.