A chemist is using a solution of HNO₃ that has a pH of 3.75. what is [H⁺] for the solution is 1.7 × 10⁻⁴M.
<h3>How do we calculate the [
H⁺]?</h3>
Concentration of H⁺ ion will be calculated by using the below equation of pH as:
pH = -log[H⁺]
or [H⁺] = 
Given that, pH = 3.75
So concentration of H⁺ ion will be calculated as:
[H⁺] = 
[H⁺] = 1.7 × 10⁻⁴M
Hence concentration of H⁺ ion is 1.7 × 10⁻⁴M.
To know more about pH & [H⁺], visit the below link:
brainly.com/question/8758541
Answer:
a. spontaneous
Explanation:
Hello,
In this case, since the Gibbs free energy is a metric that allows us to know whether a chemical reaction is spontaneous (Gibbs free energy less than 0) or nonspontaneous (Gibbs free energy greater than 0) we can mathematically define it as:

Thus, if the enthalpy is negative and the entropy is negative, the subtraction become always negative, for which the Gibbs free energy is negative as well, therefore, based on the aforementioned, any process with a negative change in enthalpy and a positive change in entropy will be: a. spontaneous.
Best regards.
Answer:
The correct answer is 0.033 M
Explanation:
We have a solution of NaClO with a concentration of 5%w/w:
5% w/w= 5 g NaClO/100 g solution
The first dilution is 10 ml of solution in 100 ml. That is a 1/10 dilution (10ml/100 ml= 1/10). That means we are diluting 10 times the solution. We can calculate the resulting concentration after this first dilution as follows:
5%w/w x 10 ml/100 ml = 5% w/w/10= 0.5%w/w
Then, we take 6 ml of 0.5% w/w solution and we add 6 ml of dye in a reaction vessel. The total volume of the solution in the reaction vessel is 6 ml + 6 ml= 12 ml, and we are diluting twice the solution because 6 ml/12 ml= 1/2. We can calculate the resulting concentration of the solution after this second dilution as follows:
0.5% w/w x 6 ml/12 ml= 0.5% w/w/2= 0.25%w/w
Finally, we need to convert the concentration from %w/w to M (mol solution/1L solution). For this, we assume a density of the solution close to the density of water (1.00 g/ml) and we use the molecular weight of NaClO (74.44 g/mol):
0.25 g NaClO/100 g solution x 1 mol NaClO/74.44 g x 1.00 g solution/1 ml x 100 ml/0.1 L= 0.033 mol/L
= 0.033 M