Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Answer:
A. Carboxyl group
Explanation:
The carboxyl group is an organic functional group in chemistry that consists of a carbon atom double-bonded to an oxygen atom and singly linked to a hydroxyl group. Another way to think about it is as a carbonyl group (C=O) with an attached hydroxyl group (O-H).
Answer:
3.24
Explanation:
The dissociation equation for the carboxylic acid can be represented as follows:
RCOOH —-> RCOO- + H+
We can use an ICE table to get the value of the concentration of the hydrogen ion. ICE stands for initial, change and equilibrium.
RCOOH RCOO- H+
Initial 0.2 0.0. 0.0
Change -x +x. +x
Equilibrium 0.2-x. x. x
We can now find the value of x as follows:
Ka = [RCOO-][H+]/[RCOOH]
(1.66* 10^-6) = (x * x)/(0.2-x)
(1.66 * 10^-6) (0.2-x) = x^2
x^2 = (3.32* 10^-7) - (1.66*10^-6)x
x^2 + (1.66 * 10^-6)x - (3.32* 10^-7) = 0
Solving the quadratic equation to get x:
x = 0.0005753650094369094 or - 0.0005753650094369094
As concentration cannot be negative, we discard the negative answer
Hence [H+] = 0.0005753650094369094
By definition, pH = -log[H+]
pH = -log(0.0005753650094369094)
pH = 3.24
Single Replacement and Double Replacement reactions