Answer:
Just here for the points sorry
Explanation:
Minecraft I will not be able to make the weekend of this trip until Sunday evening and I will be away for the rest of the of the week weekend and I will will be back from London tomorrow for lunchtime a week or so if to for for if to go for the it a the the it a couple of rest in the morning the other week night if and time as I we are have the first one in the evening morning so I'll we have an appointment early for in a the class morning and for and then
Answer:
Types of Potential Energy
Elastic Potential Energy. Anything that can act like a spring or a rubber band can have elastic potential energy. ...
Gravitational Potential Energy. There is a constant attractive force between the Earth and everything surrounding it, due to gravity. ...
Chemical Potential Energy.
(IF THIS HELPED CAN YOU GIVE ME A BRAINYLEST PLEASE?)
Answer: 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Explanation:
1) Data:
Water ⇒ C = 1 cal/g°C
m = 65.8 g
Ti = 31.5°C
Tf = 36.9°C
Heat, Q = ?
2) Formula:
Q = mCΔT
3) Calculations:
Q = 65.8g × 1 cal/g°C × (46.9°C - 31.5°C) = 1,013.2 cal
4) You can convert from calories to Joules using the conversion factor:
1 cal = 4.18 J
⇒ 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Answer:
.
Explanation:
Based on the electron configuration of this ion, count the number of electrons in this ion in total:
.
Each electron has a charge of
.
Atoms are neutral and have
charge. However, when an atom gains one extra electron, it becomes an ion with a charge of
. Likewise, when that ion gains another electron, the charge on this ion would become
.
The ion in this question has a charge of
. In other words, this ion is formed after its corresponding atom gains two extra electrons. This ion has
electrons in total. Therefore, the atom would have initially contained
electrons. The atomic number of this atom would be
.
Refer to a modern copy of the periodic table. The element with an atomic number of
is sulphur with atomic symbol
. To denote the ion, place the charge written backwards ("
" for a charge of
) as the superscript of the atomic symbol:
.