The molar extinction coefficient is 15,200
.
The formula to be used to calculate molar extinction coefficient is -
A = ξcl, where A represents absorption, ξ refers molar extinction coefficient, c refers to concentration and l represents length.
The given values are in required units, hence, there is no need to convert them. Directly keeping the values in formula to find the value of molar extinction coefficient.
Rewriting the formula as per molar extinction coefficient -
ξ = 
ξ = 
Performing multiplication in denominator to find the value of molar extinction coefficient
ξ =
Performing division to find the value of molar extinction coefficient
ξ = 15,200 
Hence, the molar extinction coefficient is 15,200
.
Learn more about molar extinction coefficient -
brainly.com/question/14744039
#SPJ4
1. Weird things like the one described above do not happen on a ramdom basis becuause molecules usually move within any enclosure in a ramdom manner. Thus, it is not possible for some types of particles to aggregate in one point while other types of molecule aggreagate in another point. Based on the kinetic energy that is available for each particle, each particle will move random
through the available space, colliding with one another and with the wall of container.
2. It will be a difficult thing to live in a Maxwell' demon world because, things will happen unpredictably and one will never know what to expect next because anything can happen at anytime. For instance, if one is drinking a glass of water, some of the particles of the water may just decide to aggregate to one part of the cup and start boiling. So, for someone who is taking a glass of water, the water may start boiling right inside his mouth when he is drinking, that will be a bad experience. When one is driving a car, the petrol particles may just decide to freeze up when one is busy speeding on the highway; that can cause a very serious accident. Thus, a world where the Maxwell law operates will be a chaotic world.
<span>The symbol for the element whose atoms have 40 electrons each is Zr. This is the element zirconium. In the atoms of a pure element, the number of positively charged protons is normally equal to the number of negatively charged electrons. Hence, the number of electrons in the atom can be inferred from the atomic number, which corresponds to the number of protons in an atom. The atomic number of zirconium is 40.</span>
Answer:
A working model used to test a design is called a
stop