What I can’t understand I’m American
Answer:
The answer to your question is 24.325
Explanation:
Data
Magnesium-24 Abundance = 78.70%
Magnesium-25 Abundance = 10.13%
Magnesium-26 Abundance = 11.17%
Process
1.- Convert the abundance to decimals
Magnesium-24 Abundance = 78.70/100 = 0.787
Magnesium-25 Abundance = 10.13/100 = 0.1013
Magnesium-26 Abundance = 11.17/100 = 0.1117
2.- Write an equation
Average atomic mass = (Atomic mass-1 x Abundance 1) + (Atomic mass 2 x
Abundance-2) + (Atomic mass 3 x Abundance 3)
3.- Substitution
Average atomic mass = (24 x 0.787) + (25 x 0.1013) + (26 x 0.1117)
4.- Simplification
Average atomic mass = 18.888 + 2.533 + 2.904
5.- Result
Average atomic mass = 24.325
Answer:
a=28600J; b=90.6 J/K; c=402 torr
Explanation:
(a) considering the data given
Vapour pressure P1 =0 at Temperature T1 = 42.43˚C,
Vapour pressure P2 = 273.15 at Temperature T2= 315.58 K)
Using the Clausius-Clapeyron Equation
ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
In 760/140 = ΔH/8.314 J/mol/K × (1/315.58K -- 1/273.15K)
ΔH vap= +28.6 kJ/mol or 28600J
(b) using the Equation ΔG°=ΔH° - TΔS to solve forΔS.
Since ΔG at boiling point is zero,
ΔS =(ΔH°vap/Τb)
ΔS = 28600 J/315.58 K
= 90.6 J/K
(c) using ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
ln P298 K/1 atm = 28600 J/8.314 J/mol/K × (1/298.15K - 1/315.58K)
P298 K = 0.529 atm
= 402 torr
Answer:
Explanation:
Hello there!
In this case, according to the given information it will be firstly necessary to set up the chemical equation taking place:
We infer we need to calculate the moles of NH3 by using both of the moles of N2 and H2 at the beginning, in order to identify the limiting reactant:
Thus, since hydrogen yields the fewest moles of ammonia, we conclude that we are just able to yield 4 moles of NH3.
Regards!
Answer:
V = 0.63 L
Explanation:
To solve this problem, we need to use the Charle's law which is a law that involves temperature and volume, assuming we have a constant pressure. The problem do not state that the pressure is being altered, so we can safely assume that the pressure is constant (Maybe 1 atm).
Now, as the pressure is constant, the Charle's law is the following:
V₁ / T₁ = V₂ / T₂ (1) V is volume in Liter, and T is temperature in Kelvin.
Using this law with the given data, we solve for V₂:
V₂ = V₁T₂ / T₁
Before we use this expression, let's convert the temperatures to Kelvin:
T₁ = 19 + 273 = 292 K
T₂ = 250 + 273 = 523 K
Now, let's calculate the volume of the balloon:
V₂ = 0.35 * 523 / 292
<h2>
V₂ = 0.63 L</h2>