Too much money and dangerous
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.
The correct Lewis structure of SO2 is the Lewis structure that shows all the 12 valence electrons in the molecule.
A Lewis structure shows the number of valence electrons on the valence shell of all the atoms in a compound. The electrons are shown as dots around the symbol of each element or a dash to indicate shared electrons in a covalent bond.
Looking at the Lewis structure of SO2 attached to this answer, we can see the twelve valence electrons in the molecule and how they are distributed around each atom as shown.
Learn more: brainly.com/question/20514601