The element with atomic number 71(lutetium) is paramagnetic
This is because all its electrons is not paired . lutetium has electron configuration of (Xe) 4f^14 5d^1 6S^2
Its 5d sub shell is not paired since the d sub shell can accommodate a total of 10 electrons hence lutetium is paramagnetic
Answer:
2NaOH + CO2 -> Na2CO3 + H2O
1) Find the moles of each substance

2) Determine the limitting reagent

∴ Carbon dioxide is limitting as it has a smaller value.
3) multiply the limiting reagent by the mole ratio of unknown over known
n(H2O ) = 0.3976369007 × 1/2
= 0.1988184504 moles
4) Multiply the number of moles by the molar mass of the substance.
m = 0.1988184504 × (1.008 × 2 + 16.00)
= 0.1988184504 × 18.016
= 3.581913202 g
Explanation:
Answer: 10
Explanation:
The detailed solution is contained in the image attached. The molar mass of hydrated and anhydrous salts are obtained and the number of moles of hydrated and hydrated salts are equated. The masses of hydrated and anhydrous salts are gives in the question and are simply substituted accordingly. This can now be used to obtain the number of molecules of water of crystallization as required in the question.
Answer:
See explanation
Explanation:
A titration involves the addition of a titrant to an analyte solution. It is a method of volumetric analysis.
When a particular volume of titrant is added, the colour changes to signal the end point of the reaction.
The point at which the colour changes is called the equivalence point. This is the point at which the amount of titrant added is just enough to completely neutralize the analyte solution.
Hence the volume NaOH that needs to be added to the beaker containing HCl to cause a colour change is the volume of NaOH that is just enough to completely neutralize the HCl solution.
Answer:
Ca(NO3)2 has the highest boiling point ( option A)
Explanation:
Step 1: Data given
A. 1.25 M Ca(NO3)2
B. 1.25 M KNO3
C. 1.25 M CH3OH
D. 2.50 M C6H12O6
Step 2: Calculate highest boiling point
The boiling point depends on the van't Hoff factor
This shows the particles produced when the substance is dissolved. For non-electrolytes dissolved in water, the van' t Hoff factor is 1.
Ca(NO3)2 → Ca^2+ + 2NO3- → Van't Hoff factor = 3
KNO3 → K+ + NO3- → Van't Hoff factor = 2
CH3OH is a non-elektrolyte → Van't Hoff factor = 1
C6H12O6 is a non-elektrolyte → Van't Hoff factor = 1
Ca(NO3)2 has the highest boiling point