1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
6

If the magnitude of the electric field in air exceeds roughly 3 ✕ 106 N/C, the air breaks down and a spark forms. For a two-disk

capacitor of radius 50 cm with a gap of 2 mm, what is the maximum charge (plus and minus) that can be placed on the disks without a spark forming (which would permit charge to flow from one disk to the other)? The constant ε0 = 8.85 ✕ 10-12 C2/(N·m2).
Physics
1 answer:
Westkost [7]3 years ago
8 0

Answer:

1.843 x 10^-5 C  

Explanation:

<u><em>Givens:   </em></u>

It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.  

Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation  

E = (Q/A)/∈o                                (1)

Where,

Q: total charge on the disk.

A: the area of the disk.  

<u><em>Calculations:  </em></u>

We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold  

Q = EA∈o

   = (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)  

  = 1.843 x 10^-5 C  

note:

calculations maybe wrong but method is correct

You might be interested in
Be sure to answer all parts. Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 k
Harrizon [31]

Explanation:

Given that,

(a) Speed, v=6.66\times 10^6\ m/s

Mass of the electron, m_e=9.11\times 10^{-31}\ kg

Mass of the proton, m_p=1.67\times 10^{-27}\ kg

The wavelength of the electron is given by :

\lambda_e=\dfrac{h}{m_ev}

\lambda_e=\dfrac{6.63\times 10^{-34}}{9.11\times 10^{-31}\times 6.66\times 10^6}

\lambda_e=1.09\times 10^{-10}\ m

The wavelength of the proton is given by :

\lambda_p=\dfrac{h}{m_p v}

\lambda_p=\dfrac{6.63\times 10^{-34}}{1.67\times 10^{-27}\times 6.66\times 10^6}

\lambda_p=5.96\times 10^{-14}\ m

(b) Kinetic energy, K=1.71\times 10^{-15}\ J

The relation between the kinetic energy and the wavelength is given by :

\lambda_e=\dfrac{h}{\sqrt{2m_eK}}

\lambda_e=\dfrac{6.63\times 10^{-34}}{\sqrt{2\times 9.11\times 10^{-31}\times 1.71\times 10^{-15}}}

\lambda_e=1.18\times 10^{-11}\ m

\lambda_p=\dfrac{h}{\sqrt{2m_pK}}

\lambda_p=\dfrac{6.63\times 10^{-34}}{\sqrt{2\times 1.67\times 10^{-27}\times 1.71\times 10^{-15}}}

\lambda_p=2.77\times 10^{-13}\ m

Hence, this is the required solution.

6 0
3 years ago
A high-jumper clears the bar and has a downward velocity of - 5.00 m/s just before landing on an air mattress and bouncing up at
Jobisdone [24]

-- As she lands on the air mattress, her momentum is (m v)

Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down

-- As she leaves it after the bounce,

Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up

-- The impulse (change in momentum) is

Change = (60 kg-m/s up) - (300 kg-m/s down)

Magnitude of the change = <em>360 km-m/s </em>

The direction of the change is <em>up /\ </em>.

8 0
3 years ago
A steel tank of weight 600 lb is to be accelerated straight upward at a rate of 1.5 ft/sec2. Knowing the magnitude of the force
VikaD [51]

Answer:

a) the values of the angle α is 45.5°

b) the required magnitude of the vertical force, F is 41 lb

Explanation:

Applying the free equilibrium equation along x-direction

from the diagram

we say

∑Fₓ = 0

Pcosα - 425cos30° = 0

525cosα - 368.06 = 0

cosα = 368.06/525

cosα = 0.701

α = cos⁻¹ (0.701)

α = 45.5°

Also Applying the force equation of motion along y-direction

∑Fₓ = ma

Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)

525sin45.5° + F + 212.5 - 600 = 27.95

374.46 + F + 212.5 - 600 = 27.95

F - 13.04 = 27.95

F = 27.95 + 13.04

F = 40.99 ≈ 41 lb

8 0
3 years ago
(a) what is the system of interest if the acceleration of the child in the wagon is to be calculated? (select all that apply.)
Leno4ka [110]

since child is moving along with the wagon and we need to find the acceleration of child inside that wagon then in this case the system of interest must be child + wagon

System of interest will be the system that is used to find the force or acceleration using Newton's law

Here we have to assume that system on which if we will calculate the forces then the net value of force on that system will help to calculate the unknown quantities

So here our system will be boy + wagon

6 0
2 years ago
A person drives 70 km/h in 1 hour to the east, then 80 km/h for another hour to the east. What
andre [41]

Answer: The average velocity is 150 km/h

Explanation: 70+80=150

6 0
3 years ago
Other questions:
  • A train has a mass of 1.50 x 107 kg. If the engine can
    12·1 answer
  • What is the state of the matter of fire?
    7·2 answers
  • How do repeater stations improve the quality of a broadcast?
    6·1 answer
  • Jose is batting for the home team when he hits a foul ball that rises straight up over home plate. A fan in the stands notices t
    10·1 answer
  • A softball player swings a bat, accelerating it from rest to 2.6 rev/srev/s in a time of 0.20 ss . Approximate the bat as a 0.90
    10·1 answer
  • If the moon's acceleration due to gravity caused by its gravitational field is one-sixth that of the earth, what is its accelera
    5·1 answer
  • When doing a squat, how do you do it without getting hurt?
    5·2 answers
  • What is the magnetic field at a point P midway between two wires, each carrying a current of 29 Amps in opposite directions and
    12·1 answer
  • I WILL GIVE YOU BRAINLIEST!!
    7·1 answer
  • Guys please help me on the rest of the numbers
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!