1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katyanochek1 [597]
2 years ago
9

Never mind i dont need help anymore

Physics
1 answer:
Usimov [2.4K]2 years ago
8 0
Yay good for you!!!!
You might be interested in
When comparing two circuits, you note that circuit one has twice the resistance and double the voltage of circuit two. This mean
pochemuha

This means that there is same current flow in both the circuit, or the circuit one has twice the power of circuit two.

According to ohm's law, the resistance is given as

I=V/R

Since the circuit one has twice the voltage, and resistance

I1=I2

5 0
3 years ago
Read 2 more answers
An old-fashioned LP record rotates at 33 1/3 RPM
Ksenya-84 [330]

Answer:

Part a) \frac{5}{9}\ \frac{rev}{sec}

Part b) \frac{9}{5}\ \frac{sec}{rev}

Explanation:

Part a) what is its frequency, in rev/s

we have that

An old-fashioned LP record rotates at 33 1/3 RPM

so

33\frac{1}{3}\ \frac{rev}{min}

Convert mixed number to an improper fraction

33\frac{1}{3}\ \frac{rev}{min}=\frac{33*3+1}{3}=\frac{100}{3}\ \frac{rev}{min}

Remember that

1\ min=60\ sec

Convert rev/min to rev/sec

\frac{100}{3}\ \frac{rev}{min}=\frac{100}{3}(\frac{1}{60})=\frac{100}{180}\ \frac{rev}{sec}

Simplify

\frac{5}{9}\ \frac{rev}{sec}

Part b) what is it period, in seconds

we know that

The period is the reciprocal of the frequency

therefore

the frequency is

\frac{9}{5}\ \frac{sec}{rev}

4 0
3 years ago
A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assum
s2008m [1.1K]

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=q=-2.74\times 10^{-6} C

Kinetic energy of particle=K_E=6.65\times 10^{-10} J

Initial time=t_1=6.36 s

Final potential difference=V_2=0.351 V

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

qV=K.E

Using the formula

2.74\times 10^{-6}V_1=6.65\times 10^{-10} J

V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V

Initial voltage=V_1=2.43\times 10^{-4} V

\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2

Using the formula

\frac{V_1}{V_2}=(\frac{6.36}{t})^2

\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}

t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}

t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}

t=241.7 s

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

6 0
3 years ago
An instrument is thrown upward with a speed of 15 m/s on the surface of planet X where the acceleration due to gravity is 2.5 m/
Katen [24]
<h2>Answer: 12 s</h2>

Explanation:

The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.

In this sense, the main movement equation in the Y axis is:

y-y_{o}=V_{o}.t-\frac{1}{2}g.t^{2}    (1)

Where:

y  is the instrument's final position  

y_{o}=0  is the instrument's initial position

V_{o}=15m/s is the instrument's initial velocity

t is the time the parabolic movement lasts

g=2.5\frac{m}{s^{2}}  is the acceleration due to gravity at the surface of planet X.

As we know y_{o}=0  and y=0 when the object hits the ground, equation (1) is rewritten as:

0=V_{o}.t-\frac{1}{2}g.t^{2}    (2)

Finding t:

0=t(V_{o}-\frac{1}{2}g.t^{2})   (3)

t=\frac{2V_{o}}{g}   (4)

t=\frac{2(15m/s)}{2.5\frac{m}{s^{2}}}   (5)

Finally:

t=12s

3 0
3 years ago
Q7:<br> A 4 kg toy is lifted off the ground and falls at 3 m/s. What is the toy's energy?
alexandr1967 [171]

Answer:

The toy's energy is 18 J.

Explanation:

We have, a 4 kg toy is lifted off the ground and falls at 3 m/s. It is required to find toy's energy.

The toy will have kinetic energy due to its motion. The energy is given by :

E=\dfrac{1}{2}mv^2\\\\E=\dfrac{1}{2}\times 4\times 3^2\\\\E=18\ J

So, the toy's energy is 18 J.

7 0
3 years ago
Other questions:
  • Plz help<br>I need it fast<br>​
    10·2 answers
  • A sound wave travels through a column of hydrogen at STP. Assuming a density of rho = 0.0900 kg/m3 and a bulk modulus of β = 1.4
    5·1 answer
  • Does a comets tail always trail along behind it in its orbit?
    10·1 answer
  • An astronaut landed on a far away planet that has a sea of water. To determine the gravitational acceleration on the planet's su
    5·1 answer
  • What is one limitation of using the jawbreaker as a model for Earth's layers? A. The layers are all made out of the same materia
    5·2 answers
  • 25 POINTS FOR GOOD ANSWERS!!!!!! BAD ONES WILL BE REPORTED!!!
    12·1 answer
  • A skier skis down a slope with a constant acceleration of 3 m/s?. If she reaches the bottom in 10 seconds, how long is the slope
    5·1 answer
  • FLUKE
    8·1 answer
  • In three to five sentences, identify two components of the control subsystem of a vehicle, and use them to explain why driving c
    15·1 answer
  • How do u say i like u to ur crush but not make it akward
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!