Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle
Answer:
1.Fluorine is having 7 number of electrons and 1 makes bond.
Electronic configuration - 1S² 2S² 2P⁵
1 electron need to get in stable states 2P⁶.
2.Oxygen is having 6 balance electron and 2 makes bonds.
Electronic configuration - 1S² 2S² 2P⁴
2 electron need to get in stable states 2P⁶.
3.Nitrogen is having 5 balance electron and 3 makes bonds.
Electronic configuration - 1S² 2S² 2P³
3 electron need to get in stable states 2P⁶.
4. Carbon having 4 balance electron and 4 makes bonds.
Electronic configuration - 1S² 2S² 2P²
4 electron need to get in stable states 2P⁶.
Answer:
Kinetic energy = 35840 Joules
Explanation:
Given the following data;
Mass = 70kg
Velocity = 32m/s
To find the kinetic energy;
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where, K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.

Substituting into the equation, we have;



K.E = 35840 Joules.
Therefore, the kinetic energy possessed by the cheetah is 35840 Joules.
<span>Radius distance from origin to particle = √ (2²+1²) = √5 m = R
I = MR² = (0.200)(5) = 1.00 kg-m²
Θ = arctan 2/1 = 63.4° = R's angle CCW from horizontal
V = 3.0 m/s
V component that is at 90° to R = 3.0(sin 90°- 63.4°) = 3.0(sin 26.6°) = 1.3433 m/s
w = [V component / R] = 1.3433/√5 = 0.601 rad/s
size of angular momentum of particle relative to origin = Iw = (1.00)(0.601) = 0.601 kgm²/s</span><span>
i hope I'm right</span>
Nuclear energy comes from nucleus of atoms which is released by nucleus fusion