E S *
The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).
The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years
Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.
To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.
As a result, you get a mere 268335.7 centimeters.
To put that into perspective, that's only about 1.7 miles
A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
Answer:
The total electric potential at mid way due to 'q' is 
The net Electric field at midway due to 'q' is 0.
Solution:
According to the question, the separation between two parallel plates, plate A and plate B (say) = d
The electric potential at a distance d due to 'Q' is:

Now, for the Electric potential for the two plates A and B at midway between the plates due to 'q':
For plate A,
Similar is the case with plate B:
Since the electric potential is a scalar quantity, the net or total potential is given as the sum of the potential for the two plates:


Now,
The Electric field due to charge Q at a distance is given by:

Now, if the charge q is mid way between the field, then distance is
.
Electric Field at plate A,
at midway due to charge q:

Similarly, for plate B:

Both the fields for plate A and B are due to charge 'q' and as such will be equal in magnitude with direction of fields opposite to each other and hence cancels out making net Electric field zero.
Answer:
Rs. 432*10^3 (In kilowatts per hour)
I hope it will be useful.
Yes for an object moving on a horizontal plane, R = mg (where mg = weight). therefore, for an object moving on a horizontal plane: F = μmg
Answer:
Detailed step wise solution is attached below
Explanation:
(a) wavelength of the initial note 2.34 meters
(b) wavelength of the final note 0.389 meters
(d) pressure amplitude of the final note 0.09 Pa
(e) displacement amplitude of the initial note 4.78*10^(-7) meters
(f) displacement amplitude of the final note 3.95*10^(-8) meters