Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
Answer:
a. Zin = 41.25 - j 16.35 Ω
b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c. Pin = 216 w
d. PL = Pin = 216 w
e. Pg = 478.4 w , Pzg = 262.4 w
Explanation:
a.
Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]
βl = 2π / λ * 0.15 λ = 54 °
Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]
Zin = 41.25 - j 16.35 Ω
b.
I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶
V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)
V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c.
Pin = ¹/₂ * Re * [V₁ * I₁]
Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)
Pin = 216 w
d.
The power PL and Pin are the same as the line is lossless input to the line ends up in the load so
PL = Pin
PL = 216 w
e.
Pg Generator
Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)
Pg = 478.4 w
Pzg dissipated
Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50
Pzg = 262.4 w
Convex mirrors only produce virtual images
Answer:
163.8 ft
Explanation:
In triangle ABD
= 155 ft


Using Pythagorean theorem in triangle ADC

= distance between the anchor points
distance between the anchor points is given as
