Recall the wave equation,

where c is the speed of the wave (m/s), f is the frequency of the wave (Hz) and λ is the wavelength of the wave (m).

so
Answer: 4.98 m/s
Explanation:
You solve these kinetic energy, potential energy problems by using the fact P.E.+ K.E. = a constant as long as friction is ignored.
PEi = 0 in this case
KEi = ½mVi² = PEf+KEf = mghf + ½mVf²
½1210*8.31² = 1210*9.8*2.26 + ½1210*Vf²
½1210*Vf² = ½1210*8.31² - 1210*9.8*2.26
Vf² = 8.31² - 2*9.8*2.26 = 4.98² so Vf = 4.98m/s
Answer:
A) 0.50 mV
Explanation:
In this problem, we can think the wings of the bird as a metal rod moving across a magnetic field. So, and emf will be induced into the wings of the bird, according to the formula:

where
is the strength of the magnetic field
v = 13 m/s is the speed of the bird
L = 1.2 m is the wingspan of the bird
is the angle between the direction of motion and the direction of the magnetic field
Substituting numbers into the formula, we find

The element is iridium and it has 77 electrons
Answer: Heterogeneous mixture - the parts are not uniformly mixed.
A mixture contains components having distinct chemical properties. There are two types of mixtures: homogeneous and heterogeneous. In a homogeneous mixture there is uniform distribution of components. we cannot distinguish one portion of the mixture from another. for example salt mixed in water. In heterogeneous mixture, the components are not uniformly mixed. hence, we are able to distinguish different parts of a mixture, like the mixture of iron, sand and salt given in this question.