<span>122.0 km/hr. First let’s make sure all of our units are in the base meter form: i.e. convert 5km to 5000m. (We will convert back to km later). The first thing to do is look at the equation relating velocity, acceleration, and distance: Vf^2 = Vi^2 + 2*a*d, where Vf is final velocity, Vi is initial velocity, a is acceleration, and d is distance. 25^2 = 10^2 + 2*a*5000 =?> 625 = 100 +10000a => a= 0.0525m/s^2. Now that we have acceleration, we can use the same equation again with different numbers.: Vf^2 = Vi^2 + 2*a*d = 25^2 + 2*0. 0525m*5000 = 625 + 525 =1150 => Vf^2 = 1150 => 33.9m/s. Convert to km/hour: 33.9m/s * 1km/1000m *60s/1min * 60min/ 1 hr = 122.0 km/hr.</span>
The macromolecule that is made up of subunits that are called amino acids are the protein. The answer is therefore letter D. The carbohydrates are made up of subunits called monosaccarides. The lipids are mades up of subunits referred to as the fatty acid while nucleic acid are made up of nucleotides.
The net force on an object subject to friction is equal to the sum of the applied force and the frictional force.
Mathematically,

Here, m is mass of object and a is its acceleration. We take frictional force negative because it opposes the motion of object.
Given,
,
and 
Substituting these values in above formula, we get
.
Thus, the acceleration of an object is 
Answer:
9.67 A
Explanation:
The weight of a student with a mass of m = 75 kg is:

where g=9.8 m/s^2 is the acceleration due to gravity.
We want the magnetic force on the wire to be equal to this weight. The magnetic force on the wire is

where
I is the current in the wire
L = 2.0 m is the length of the wire
B = 38 T is the magnetic field
is the angle between the direction of B and L
Since we want W=F, we can write

And we can solve it to find the current I:
