Answer:
The speed at the bottom of the driveway is3.67m/s.
Explanation:
Height,h= 5sin20°= 1.71m
Potential energy PE=mgh= 2000×9.8×1.71
PE= 33516J
KE= PE- Fk ×d
0.5mv^2= 33516 - (4000×5)
0.5×2000v^2= 33516 - 20000
1000v^2= 13516
v^2= 13516/1000
v =sqrt 13.516
v =3.67m/s
Kilogram(kg)
It's not the SI unit of mass in the metric system however.
Answer:
Yes, it would make it back up.
Explanation:
If it has 100,000 Joules of gravitational potential energy at the top of the hill, by the time the cart gets to the bottom, it will become PE = 0, KE = 90,000 since 10% of 100,000 is 10,000. The cart only requires 80,000J to climb back up so it should easily do so.
I didn't quite understand if the 10% energy loss is total, or every time it goes up or down, but it isn't a problem because 10% of 90,000 is 9,000, which means it would have 81,000J of energy on the way back up IF it loses energy due to friction on the way back up also.
The only physical law you need to prove this is the Law of Conservation of Energy: no energy is lost, only transformed; 10% of the energy becomes heat, the rest remains mechanical energy, which is the reason why the reasoning above works.
The result of
changing a physical sound wave into an analogous electrical signal using a
transducer (such as a microphone) is called analogue audio. In this system, the rapid electrical level is
directly proportional to the rapid air pressure taken by the transducer. The analogue
signal is then augmented and can be kept on an analogue medium such as tape or transformed
further into a succession of discrete mathematical numbers. The advantages of
using this device is that it yields a subtle sound and is pleasing to the ear
by pushing the signal level and overdriving it. But the disadvantages are
editing it would be tedious and prone to degradation.
Answer:
1.) 113500J
2.) 237m
Explanation:
Hello!
To solve this exercise follow the following steps, the description and complete process is in the attached image
1. Draw the full sketch of the problem.
2. The work is defined as the product of the trajectory by the force that is parallel to this direction, for this reason to find the work done we multiply the horizontal distance (250m) by the applied force (454N)
3. The potential energy is equal to the product of mass, gravity and height and is equal to the work done by the force applied by the cyclist, of this relationship and using algebra we can find the height that the cyclist climbed
4. We use the sine function to find the diagonal distance using the height and angle of the slope