It is moving at a constant speed, not accelerating.
Answer:
Explanation:
We shall apply here Doppler's effect in optics . The formula is as follows

Δλ is change in wavelength , λ is original wavelength , v is velocity and c is velocity of light
Δλ = 685 - 590 = 95 nm
λ = 685
95 / 685 = v / 3 x 10⁸
v = .416 x 10⁸ m / s
= 4.16 x 10⁷ m /s
Answer:
3.66m/s^2
Explanation:
First, we need to find the friction which is F=u*N.
After that, find the resultant force by substarcting the friction from the forward force.
Lastly,using the formula F=ma, substitute in the known values of F and m to find a
Answer: -31.36 m/s
Explanation:
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Finally:
Note the negative sign is because the direction of the bag is downwards as well.
Answer:
ΔVab = Ed
ΔVab = Va-Vb = Va-V0 = Va
E = Va/ d
= 413V / 0.0795 m
= 5194.97 V/M
Explanation:
the potential difference between two uniform plates is calculated by the formula of electric field.