The force the escaping gas exerts of the rocket is 10.42 N.
<h3>
Force escaping gas exerts</h3>
The force the escaping gas exerts of the rocket is calculated as follows;
F = m(v - u)/t
where;
- m is mass of the rocket
- v is the final velocity of the rocket
- u is the initial velocity of the rocket
- t is time of motion
F = (0.25)(40 - 15)/0.6
F = 10.42 N
Thus, the force the escaping gas exerts of the rocket is 10.42 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1
Yes, <span> the moon fall partly into earth's shadow when it is in its full size</span>
It’s C I hope it helps you
The term is frequency.
The frequency is the number of vibrations per unit of time or the number of waves that passes a point per unit of time.
Every crest (and every trough) represents a pass of the wave so you can count the number of crests in an intervavl of time to find the frequency as the number of crests divided by the time elapsed.
Answer:
H = 1/2 g t^2 time to reach top of trajectory
v = g t time to reach top of trajectory when v is initial speed upwards
v = 5 g = 49 m/s 5 sec upwards and 5 sec downwards