-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Escape velocity is the speed that an object needs to be traveling to break free of a planet or moon's gravity well and leave it without further propulsion. For example, a spacecraft leaving the surface of Earth needs to be going 7 miles per second, or nearly 25,000 miles per hour to leave without falling back to the surface or falling into orbit.
The correct answer is <span>The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N