They have a negative charge and rotate around the nucleus
Do not worry if you don't recognize both parts of the problem at this point. If you recognize the dynamics problem,<span> On the other hand, if you recognize this as a kinematics problem you will quickly see that you need to find angular acceleration before you can begin and so will need to do that pre-step first.</span>
The price of coast to coast membership in united states could lie anywhere between $2,000 to $ 5,000
Unless you're a frequent user of this type of event, i think it would be economically more efficient if you pay the resort on one-day price
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
Carbohydrates <span>carbohydrates are repeating sugar units. They are the only ones that are repeating sugar units</span>