Answer:
Step-by-step explanation:

Answer:
1200 mg
Step-by-step explanation:
16% = .16
.16x = 192
x =(192/.16)
x = 1200mg
Answer:

Step-by-step explanation:
This problem can be solved by using the expression for the Volume of a solid with the washer method
![V=\pi \int \limit_a^b[R(x)^2-r(x)^2]dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_a%5Eb%5BR%28x%29%5E2-r%28x%29%5E2%5Ddx)
where R and r are the functions f and g respectively (f for the upper bound of the region and r for the lower bound).
Before we have to compute the limits of the integral. We can do that by taking f=g, that is

there are two point of intersection (that have been calculated with a software program as Wolfram alpha, because there is no way to solve analiticaly)
x1=0.14
x2=8.21
and because the revolution is around y=-5 we have

and by replacing in the integral we have
![V=\pi \int \limit_{x1}^{x2}[(lnx+5)^2-(\frac{1}{2}x+3)^2]dx\\](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_%7Bx1%7D%5E%7Bx2%7D%5B%28lnx%2B5%29%5E2-%28%5Cfrac%7B1%7D%7B2%7Dx%2B3%29%5E2%5Ddx%5C%5C)
and by evaluating in the limits we have

Hope this helps
regards
Answer:
They can be seated in 120 differents ways.
Step-by-step explanation:
Taking into account that there are 3 couples and every couple has an specific way to sit, for simplify the exercise, every couple is going to act like 1 option and it's going to occupy 1 Place. If this happens we just need to organize 5 options (3 couples and 2 singles) in 5 Places (3 for a couple and 2 for the singles)
It means that now there are just 5 Places in the row and 5 options to organized. So the number of ways can be calculated using a rule of multiplication as:
<u> 5 </u>*<u> 4 </u>* <u> 3 </u> * <u> 2 </u> * <u> 1 </u> = 120
1st place 2nd Place 3rd place 4th Place 5th Place
Because we have 5 options for the 1st Place, the three couples and the 2 singles. Then, 4 options for the second Place, 3 options for the third place, 2 for the fourth place and 1 option for the 5th place.
Finally, they can be seated in 120 differents ways.