The balanced equation for the reaction is as follows
Cu₂O + 2HCl ---> 2CuCl + H₂O
Molar ratio of Cu₂O to CuCl is 1:2
mass of Cu₂O reacted - 73.5 g
Number of moles of Cu₂O reacted - 73.5 g / 143 g/mol = 0.51 mol
According to the molar ratio,
when 1 mol of Cu₂O reacts then 2 mol of CuCl is formed
therefore when 0.51 mol of Cu₂O reacts then - 2 x 0.51 mol of CuCl is formed
number of CuCl moles formed - 1.02 mol
mass of CuCl formed - 1.02 mol x 99 g/mol = 101 g
mass of CuCl formed is 101 g
Answer:
Explanation:
The electron in the lowest energy state will be found in 1 s energy level.
set of 4 possible quantum numbers
Principal quantum no : n = 1 ,
Azimuthal quantum no l = 0
Magnetic quantum no m = 0
Spin quantum no s = + 1/2
set of other quantum nos
Principal quantum no : n = 1 ,
Azimuthal quantum no l = 0
Magnetic quantum no m = 0
Spin quantum no s = - 1/2
Answer:
Volume = 10ml
Density = 1/5 g/ml or 0.20g/ml
Explanation:
The rocks are 10ml since the initial volume went up by 10.
Since density = mass/volume, you divide 2 by 10.
D = 2/10
D = 1/5 g/ml or 0.20g/ml
(Unit is g/ml aka grams/millileter)
Iron (iii) chloride is obtained by vapor condensation from the reaction between chlorine gas and iron fillings.
<h3>How can iron (iii) chloride be formed from iron fillings?</h3>
Iron (ii) chloride can be formed from iron fillings in the laboratory as follows:
- Iron fillings + Cl₂ → FeCl₃
Chlorine gas is introduced into a reaction vessel containing iron fillings and the iron (iii) chloride vapor formed is obtained by condensation.
In conclusion, iron (iii) chloride is formed by the the direct combination of iron fillings and chlorine gas.
Learn more about iron (iii) chloride at: brainly.com/question/14653649
#SPJ1
Answer:
The average atomic mass of an element is the sum of the masses of its isotopes, each multiplied by its natural abundance (the decimal associated with percent of atoms of that element that are of a given isotopе). An element does not have an absolute atomic mass.
<em>Hope</em><em> this</em><em> </em><em>helps</em><em> </em><em>:</em><em>)</em>