Kinetic energy is energy of motion. Pick choice-A, at the top of the swing, where she stops moving & then goes the other way.
<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v
Answer:
i want to say flip the coins but im not really sure sry
Explanation:
acceleration = Velocity changes ÷ time of the velocity changes
4 m/s^2 =
4 × 10^(-3) × 3600 km / h =
4 × 3.6 =
14.4 km / h
Thus :
14.4 = V(2) - V(1) / t(2) - t(1)
14.4 = V(2) - 20 / 10
Multiply both sides by 10
10 × 14.4 = 10 × ( V(2) - 20 ) / 10
144 = V(2) - 20
Add both sides 20
144 + 20 = V(2) - 20 + 20
V(2) = 164 Km/h
Thus the final velocity after 10 seconds is 164 Km/h .