It will be traveling in the reverse direction it was originally going at 15.2 m/s
Use equations of motion to find the velocity just before it hits the floor:
<span>Vf^2 = Vi^2 + 2gx </span>
<span>Final velocity = 4.42m/s </span>
<span>Impulse is change in momentum so: </span>
<span>m(Vf - Vi) = 0.05(0 - 4.42) </span>
<span>= - 0.221 kg.m/s
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s