B. gas has no definite shape or volume. liquid has definite volume but no definite shape
Answer:-2.61 m/s
Explanation:
This problem can be solved by the Conservation of Momentum principle, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first car
is the velocity of the first car, to the North
is the mass of the second car
is the mass of the second car, to the South
is the final velocity of both cars after the collision
(4)
Isolating
:
(5)
(6)
Finally:
(7) This is the resulting velocity of the wreckage, to the south
<u><em>The question doesn't provide enough data to be solved, but I'm assuming some magnitudes to help you to solve your own problem</em></u>
Answer:
<em>The maximum height is 0.10 meters</em>
Explanation:
<u>Energy Transformation</u>
It's referred to as the change of one energy from one form to another or others. If we compress a spring and then release it with an object being launched on top of it, all the spring (elastic) potential energy is transformed into kinetic and gravitational energies. When the object stops in the air, all the initial energy is now gravitational potential energy.
If a spring of constant K is compressed a distance x, its potential energy is

When the launched object (mass m) reaches its max height h, all that energy is now gravitational, which is computed as

We have then,


Solving for h

We have little data to work on the problem, so we'll assume some values to answer the question and help to solve the problem at hand
Let's say: x=0.2 m (given), K=100 N/m, m=2 kg
Computing the maximum height


The maximum height is 0.10 meters
The frame of reference is the rotating earth underneath the flight path of the plane, the rate of rotation of the earth is 1036 miles per hour, meaning that the pilot has to compensate this fact when landing the aircraft.
<span>
adapt to a changing environment
</span><span>organisms that possess heritable traits that enable them to better adapt to their environment </span>