Answer:
141.56 N.
Explanation:
Data given:
Weight of the box= 200.2 N
Angle with the horizontal= 37.1°
Solution;
Gravitational force on the box,
= weight of the box
= 200.2 N
Component of gravitational force along plane =
( ∅ )
= W * (sin∅)
= (200.1) * sin (37.1°)
= 141.56 N
Intrusive igneous rocks cool down from magma slowly because they form underneath the surface, that will make them have large crystals.
Extrusive igneous rocks cool down from lava rapidly because they form at the surface, so that will make them have small crystals.
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.
For an object`s motion, the Kinematic equation is,

Here, v is the final velocity and h is stands for the height of the object and a is the acceleration of the object.
As according to question,
and 
Thus, putting these values in above equation, we get

or


Therefore, initial velocity is 2.8 m/s