a. The restoring force in the spring has magnitude
F[spring] = k (0.79 m)
which counters the weight of the mass,
F[weight] = (0.46 kg) g = 4.508 N
so that by Newton's second law,
F[spring] - F[weight] = 0 ⇒ k = (4.508 N) / (0.79 m) ≈ 5.7 N/m
b. Using the same equation as before, we now have
F[weight] = (0.75 kg) g = 7.35 N
so that
(5.7 N/m) x - 7.35 N = 0 ⇒ x = (7.35 N) / (5.7 N/m) ≈ 1.3 m
Answer:
90 m
Explanation:
Acceleration,
where v and u are final and initial velocities respectively, t is the time taken
Substituting
for a, 4 m/s for u and 10 s for t then
1*10=v-4
v=14 m/s
From kinematic equations

Making s the subject then

Answer:
Any of those terms can be converted to either of the other terms, so either term is correct. People are accustomed to everyday temperatures in Fahrenheit. The ideal gas law specifies that
P V = N R T where T is in Kelvin which is Celsius + 273 deg.
Answer:
10 watts
Explanation:
first calculate work.
Work =force×distance cos thita
10Kg×0.50M cos 0= 5joules
Therefore, Power=Work÷ Time
Therefore, 5joules÷0.50s=10 watts.