Answer:
16.6 °C
Explanation:
From the question given above, the following data were obtained:
Temperature at upper fixed point (Tᵤ) = 100 °C
Resistance at upper fixed point (Rᵤ) = 75 Ω
Temperature at lower fixed point (Tₗ) = 0 °C
Resistance at lower fixed point (Rₗ) = 63.00Ω
Resistance at room temperature (R) = 64.992 Ω
Room temperature (T) =?
T – Tₗ / Tᵤ – Tₗ = R – Rₗ / Rᵤ – Rₗ
T – 0 / 100 – 0 = 64.992 – 63 / 75 – 63
T / 100 = 1.992 / 12
Cross multiply
T × 12 = 100 × 1.992
T × 12 = 199.2
Divide both side by 12
T = 199.2 / 12
T = 16.6 °C
Thus, the room temperature is 16.6 °C
I believe it’s divergent boundary but I might be wrong
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.
Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.