Answer: (i) F = 2
(ii) F = 3
(iii) F = 2
Explanation:
We would be applying the famous Gibbs Phase Rule to explaining this problem;
By applying the formula;
F+P = C +2
Where P = this represent the phase
F = this is called the degree of freedom
C = this represent the component in the system
Ok let us begin;
(i). from this we can see that there are 2 components i.e. (water + ethanol) and the phase in question is a vapor phase + liquid phase.
So from the formula;
F = C-P+2
F = 2 – 2 + 2 = 2
Therefore, F = 2.
(ii). Also, from the statement, we can figure there are 3 components, while the phases are two like the previous one above, i.e. liquid + vapor
F = 3 – 2 + 2 = 5 – 2 = 3
F = 3
(iii). From this statement, we can figure there are 3 components, and the phases are 3 i.e. (2 liquid phases + 1 vapor phase)
From the formula;
F = 3 – 3 + 2 = 0 + 2
F = 2
<span>Mixing magnesium and aluminum together produces an excellent lightweight material from which to make airplane parts. This type of mixture is called an alloy.
Alloy is a mixture of two elements, one of which is a metal.
</span>
Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
Answer:
specialized if you add one more I cause I'm pretty sure there is supposed to be one more i.