Answer:
Explanation:
Here, we want to describe the relationship between the volume and temperature of an ideal gas
This relationship is defined by Charles' law
From this law, we know that the volume of a given mass of gas is directly proportional to its temperature at a fixed pressure
What this means is that as long as the pressure remains unchanged, when the volume increases, the temperature increases, and when the volume decreases, the temperature decreases
These can be represented by the mathematical formula below:
Answer:
a) Heterogeneous mixture (b) Homogenous mixture (c) Pure substance (d) Pure substance
Explanation:
Homogenous mixtures contains mixture of substances with similar proportions while Heterogenous mixture contains substances with a varying proportion.
Answer : The correct option is, (b) occur when there is more free energy in the reactants than the products.
Explanation :
Endergonic reactions : It i defined as the reaction in which the energy is absorbed during the reaction.
In endergonic reactions, the Gibbs free energy of product is lower than the reactants. That means, ΔG > 0 and the reaction is non-spontaneous.
Exergonic reactions : It i defined as the reaction in which the energy is released during the reaction.
In exergonic reactions, the Gibbs free energy of product is greater than the reactants. That means, ΔG < 0 and the reaction is spontaneous.
Hence, the endergonic reactions is occur when there is more free energy in the reactants than the products.
Answer:
V₂ = 236.84 mL
Explanation:
The relation between pressure and volume is inverse.
We can write it as follows :

We have,
P₁ = 360 torrs, V₁ = 750 mL, P₂ = 1.5 atm = 1140 torr.
So,

So, the new volume of the gas is 236.84 mL.
An Atom is the most smallest part of all matter