Answer:
the answer is 4
Step-by-step explanation:
hope this helps!
Step-by-step explanation:
Hey there!
Given;

<u>Solve</u><u> </u><u>it by</u><u> </u><u>using</u><u> </u><u>mid-term</u><u> </u><u>factorization</u><u>. </u>
<u>
</u>
<u>
</u>
<u>
</u>
<u>Take</u><u> </u><u>common</u><u> </u><u>and</u><u> </u><u>simplify</u><u> </u><u>them to get </u><u>answer</u><u>. </u>
<u>
</u>
<u>
</u>
<u>
</u>
<u>Therefore the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>option </u><u>D</u><u>.</u>
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>
This is what you get when you simplify the problem.
8 - because there are 20 birds in the cage, so you add 4 and 2/5 of 20 which gives you 12. 20 - 12 = 8
Answer:
Distinct ways in which they all can form the teams for the class = n(n-1)
Step-by-step explanation:
Total numbers of students = n (even number)
Number of student in each team = 2
Number of distinct ways are there to form the teams for the class:

where = n = number of elements = n
k = number of elements choose = 2

