Hello. This question is incomplete. The full question is:
Two blocks are stacked on top of each other on the floor of an elevator. For each of the following situations, select the correct relationship between the magnitudes of the two forces given.
The elevator is moving downward at a constant speed.
The magnitude of the force of the bottom block on the top block is _____ the magnitude of the force of the earth on the top block.
Answer:
The magnitude of the force of the bottom block on top block is equal to the magnitude of the force of the top block on bottom block.
Explanation:
As the elevator is descending, there is only a normal force being applied to the lower surface of the block. This force has a magnitude equal to the force of the upper block, because the only acceleration that is acting in this case is the force of gravity. From that force, the resulting force is zero.
Answer:
<h2>B. 20°</h2>
Explanation:
Range in projectile is defined as the distance covered in the horizontal direction. It is expressed as R = U²sin2Ф/g
U is the initial velocity of the body (in m/s)
Ф is the angle of projection
g is the acceleration due to gravity.
Given U = 14m/s, g = 9.8m/s and range R = 15 m
we will substitute this value into the formula to get the projection angle Ф as shown;
15 = 15²sin2Ф/9.8
15*9.8 = 15²sin2Ф
147 = 225sin2Ф
sin2Ф = 147/225
sin2Ф = 0.6533
2Ф = sin⁻¹0.6533
2Ф = 40.79°
Ф = 40.79°/2
Ф = 20.39° ≈ 20°
Hence, the range is greatest at angle 20°
Answer:
<u>As</u><u> </u><u>we</u><u> </u><u>kno</u><u>w</u><u> </u><u>that</u><u>,</u><u> </u>
- 1 mm/min = 1.66667E-5 m/s
- 1 m/s = 60000 mm/min
<u>Now</u><u>,</u><u> </u><u>come</u><u> </u><u>to</u><u> </u><u>the</u><u> </u><u>question</u><u> </u><u>-</u><u> </u>

Result : 2536 mm/min = 0.0422666667 m/s.
Answer: Thus the balloon will expand to 12.5 L if it suddenly rose to the surface.
Explanation:
To calculate the new volume, we use the equation given by Boyle's law. This law states that pressure is directly proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Thus the balloon will expand to 12.5 L if it suddenly rose to the surface.