Answer:
2.5 units^3
Step-by-step explanation:
Given:-
- The solid is bounded by a plane defined by the following points:
P(3, 0, 0), Q(0, 1, 0),R(0, 0, 2)
Find:-
Use a double integral to find the volume of the solid in the first octant bounded by the plane
Solution:-
- Determine the equation of the plane. Compute two direction vectors d1 and d2 that lie on the plane:
d1 = P - Q
d1 = (3, 0, 0) - (0, 1, 0) = (3,-1,0)
d2 = P - R
d2 = (3, 0, 0) - (0, 0, 2) = (3,0,-2)
- Find the a vector "normal" - n to the plane by cross product formulation of direction vectors (d1 and d2) that lie on the plane:
- The equation of plane is:
n.(x,y,z) = n.P
-2x -6y + 3z = -6
- The function of one variable would be:
z = (2/3)x + 2y - 2
- The double integration formulation would be:
![\int\limits^a_b \int\limits^c_d f(z) dy.dx\\\\\int\limits^a_b \int\limits^c_d (\frac{2x}{3} + 2y - 3) dy.dx\\\\\int\limits^a_b (\frac{2xy}{3} + y^2 - 3y) |_c^d.dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%20%5Cint%5Climits%5Ec_d%20%20f%28z%29%20dy.dx%5C%5C%5C%5C%5Cint%5Climits%5Ea_b%20%20%5Cint%5Climits%5Ec_d%20%20%28%5Cfrac%7B2x%7D%7B3%7D%20%2B%202y%20-%203%29%20dy.dx%5C%5C%5C%5C%5Cint%5Climits%5Ea_b%20%28%5Cfrac%7B2xy%7D%7B3%7D%20%2B%20y%5E2%20-%203y%29%20%7C_c%5Ed.dx)
- Where the limits (c and d) are defined by planar (x-y) projection of plane (n) :
y = d = -(1/3)x + 1
c = 0
- Evaluate the limits:
![\int\limits^a_b (\frac{-2x^2 + 6x}{9} + \frac{x^2}{9} -\frac{2x}{3} +1 + x - 3) .dx\\\\\int\limits^a_b (\frac{-x^2 }{9} + x - 2) .dx\\\\(\frac{-x^3 }{27} + \frac{x^2}{2} - 2x)|^3_0\\\\(\frac{-27 }{27} + \frac{9}{2} - 6) = 1 - 4.5 + 6 = 2.5 unit^3](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%28%5Cfrac%7B-2x%5E2%20%2B%206x%7D%7B9%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B9%7D%20-%5Cfrac%7B2x%7D%7B3%7D%20%2B1%20%20%20%2B%20x%20-%203%29%20.dx%5C%5C%5C%5C%5Cint%5Climits%5Ea_b%20%28%5Cfrac%7B-x%5E2%20%7D%7B9%7D%20%20%2B%20x%20-%202%29%20.dx%5C%5C%5C%5C%28%5Cfrac%7B-x%5E3%20%7D%7B27%7D%20%20%2B%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20%20-%202x%29%7C%5E3_0%5C%5C%5C%5C%28%5Cfrac%7B-27%20%7D%7B27%7D%20%20%2B%20%5Cfrac%7B9%7D%7B2%7D%20%20-%206%29%20%3D%201%20-%204.5%20%2B%206%20%3D%202.5%20unit%5E3)