1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
2 years ago
10

Thermosets burn upon heating. a)-True b)- false?

Engineering
1 answer:
hram777 [196]2 years ago
5 0

Answer:

true

Explanation:

True, there are several types of polymers, thermoplastics, thermosets and elastomers.

Thermosets are characterized by having a reticulated structure, so they have low elasticity and cannot be stretched when heated.

Because of the above, thermosetting polymers burn when heated.

You might be interested in
Consider a single crystal of nickel oriented such that a tensile stress is applied along a [001] direction. If slip occurs on a
Elena L [17]

Answer:

\mathbf{\tau_c =5.675 \ MPa}

Explanation:

Given that:

The direction of the applied tensile stress =[001]

direction of the slip plane = [\bar 101]

normal to the slip plane = [111]

Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:

cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big]

where;

[d_1\ e_1 \ f_1] = directional indices for tensile stress

[d_2 \ e_2 \ f_2] = slip direction

replacing their values;

i.e d_1 = 0 ,e_1 = 0 f_1 =  1 & d_2 = -1 , e_2 = 0 , f_2 = 1

cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big]

cos \ \lambda = \dfrac{1}{\sqrt{2}}

Also, to find the angle \phi between the stress [001] & normal slip plane [111]

Then;

cos \  \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big]

replacing their values;

i.e d_1 = 0 ,e_1 = 0 f_1 =  1 & d_3 = 1 , e_3 = 1 , f_3 = 1

cos \  \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big]

cos \phi= \dfrac{1} {\sqrt{3} }

However, the critical resolved SS(shear stress) \mathbf{\tau_c} can be computed using the formula:

\tau_c = (\sigma )(cos  \phi )(cos \lambda)

where;

applied tensile stress \sigma = 13.9 MPa

∴

\tau_c =13.9\times (  \dfrac{1}{\sqrt{2}} )( \dfrac{1}{\sqrt{3}})

\mathbf{\tau_c =5.675 \ MPa}

3 0
3 years ago
In normal operation, a paper mill generates excess steam at 20 bar and 400◦C. It is planned to use this steam as the feed to a t
Keith_Richards [23]

Answer:

The maximum power that can be generated is 127.788 kW

Explanation:

Using the steam table

Enthalpy at 20 bar = 2799 kJ/kg

Enthalpy at 2 bar = 2707 kJ/kg

Change in enthalpy = 2799 - 2707 = 92 kJ/kg

Mass flow rate of steam = 5000 kg/hr = 5000 kJ/hr × 1 hr/3600 s = 1.389 kg/s

Maximum power generated = change in enthalpy × mass flow rate = 92 kJ/kg × 1.389 kg/s = 127.788 kJ/s = 127.788 kW

6 0
3 years ago
Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular windmill with
Scilla [17]

Answer:

DIAMETER  = 9.797 m

POWER = \dot W = 28.6 kW

Explanation:

Given data:

circular windmill diamter D1 = 8m

v1 = 12 m/s

wind speed = 8 m/s

we know that specific volume is given as

v =\frac{RT}{P}

  where v is specific volume of air

considering air pressure is 100 kPa and temperature 20 degree celcius

v =  \frac{0.287\times 293}{100}

v = 0.8409 m^3/ kg

from continuity equation

A_1 V_1 = A_2 V_2

\frac{\pi}{4}D_1^2 V_1 = \frac{\pi}{4}D_1^2 V_2

D_2 = D_1 \sqrt{\frac{V_1}{V_2}}

D_2 = 8 \times \sqrt{\frac{12}{8}}

D_2 = 9.797 m

mass flow rate is given as

\dot m = \frac{A_1 V_1}{v} = \frac{\pi 8^2\times 12}{4\times 0.8049}

\dot m = 717.309 kg/s

the power produced \dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]

\dot W = 28.6 kW

8 0
3 years ago
on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain
Bess [88]

Answer:

The condition does not hold for a compression test

Explanation:

For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension.  The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.

<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test

5 0
2 years ago
Tesla Is the best ELECTRIC car brand, Change my mind
pochemuha

Answer:You are correct, no need to change.

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    7·1 answer
  • Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.
    5·1 answer
  • Bridge A is the longest suspension bridge in a Country. Bridge B is 5555 feet shortershorter than Bridge A. If the length of Bri
    9·1 answer
  • What are the two most important things to remember when at the end of your interview?
    6·1 answer
  • You are watching the weather forecast and the weatherman says that strong thunderstorms and possible tornadoes are likely to for
    15·1 answer
  • Electrical pressure or “force”<br><br> A) current<br> B) resistance <br> C) voltage
    6·1 answer
  • if a voltage is applied to a capacitor, current flows easily at first and then slows as the capacitor becomes charged. Inductors
    5·1 answer
  • Local technology is foundation for modern technology? justufy this statement with example.​
    12·1 answer
  • These are the most widely used tools and most often abuse tool​
    15·2 answers
  • What is the tolerance for number 4?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!