Number of neutrons = atomic mass - number of protons
= 13 - 6 = 7
In short, Your Answer would be Option B
Hope this helps!
PLS HELP ME ASAP I DONT HAVE TIME. IT ALSO DETECTS IF ITs RIGHT OR WRONG. PLS HELP ME ASAP I DONT HAVE TIME. IT ALSO DETECTS IF ITs RIGHT OR WRONG.
<span>This problem is solved by the equation of motion:
x = x0 + v0*t + 1/2*a*t^2,
Here x0 = 0, v0 = 40ft/sec and a = -5 ft/s^2, we need to solve for t:
v = v0 + a*t, solve how long does it take to stop: 0 = v0 + a*t --> a*t = -v0 --> t = -v0/a
-- > 40/5 = 8 seconds to stop.
In this time, the car travels x = 0 + 40*8 + 0.5*-5*8^2 ft ~ 160 ft.
Answer: The car travels 160 ft.</span>
Answer:
Explanation:
This is going to sound like an absurd answer, but sometimes physics can be a little strange.
This answer is weird because of the definition of displacement. It means the distance from the starting point to the ending point, disregarding what happened in between. The point is that the astronaut is at the starting point of his orbit. By definition the starting and ending points are the same. His displacement is 0.
So the answer is you have the greater displacement when you walked one way to school. The starting point and the ending point are different. You have gone further.
However just to make things a little nasty, when you walk home again, your displacement will be the same as the astronaut's -- 0 meters because you will be right back where you started from.
Answer:

Explanation:
A closed system is a system where exists energy interactions with surroundings, but not mass interactions. If we neglect any energy interactions from boundary work, heat, electricity, magnetism and nuclear phenomena and assume that process occurs at steady state and all effects from non-conservative forces can be neglected, then the equation of energy conservation is reduce to this form:
(1)
Where:
- Change in kinetic energy of the system, measured in joules.
- Change in gravitational potential energy of the system, measured in joules.
If we know that
and
, then we get the following equation:
(2)
Where
and
stands for initial and final states of each energy component.
Hence, the right answer is 