Answer:
Explanation:
This is an application of Newton's second Law.
Formula
F = m * a
F = 300 N
m = 100 kg
a = ?
F = m * a
300N = 100 kg * a Divide by 100
300N/100kg = a
a = 3 m/sec^2
This is the photoelectric effect, and it is best explained by the particle model of light.
<h3>What is the photoelectric effect?</h3>
The photoelectric effect refers to the emission of negatively charged particles and electromagnetic radiation that hits an object.
The photoelectric effect shows how electrons can be released from a given object when this material is absorbing electromagnetic radiation.
The photoelectric effect is a fundamental piece of evidence for understanding the nature of light particles.
Learn more about the photoelectric effect here:
brainly.com/question/1359033
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
power =( 890 N x 12 m ) / 22 s=
= 485 Watts
Explanation:
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.
